Interference: DC & AC

Detection and Mitigation

Christopher R. McKinley, P.E.

Chief Operating Officer

Interference: When Things don't go Our Way

• How does Interference

Interference Defined

• What are the source

AC Interference

How do I determine the pipeline has AC Interference?
How bad is the Problem?
What can be done?

DC Interference

How do Fastermine the pipeline has AC Interference? How bad in the Problem? What can be done?

Interference Defined

Currents that follow paths other than those intended

DC Interference vs AC Interference A Brief Distinction

	(

When <u>any</u> net discharge of current leaves the pipeline, <u>corrosion</u> necessarily occurs AC

The presence of AC potential and associated current discharge does not necessarily cause corrosion

Alternating Current – A.K.A. "AC"

 Constantly changing + to -

 Frequency of the change is 60 times/sec

•Making DC: Rectifier Function

A Rectifier Makes DC...sort of

Setting the Stage

Direct Current – A.K.A. "DC"

 Current flows in one direction – Think Battery

 If a Rectifier made the DC, What is the Frequency?

AC Induction Effects

The Four Risks

- Safety, Arc Fault, Coating Stress, Corrosion
- Caused by:
- Inductive, Resistive, Capacitive

Back Feeding AC Current through the Rectifier

AC Mitigation

• Problems Measuring the Instant-Off

AC Induction – a Simple Model

- No moving parts
- All wires are insulated
- Primary & Secondary wires never touch electrically

<u>Electromagnetism</u>

In Action

AC Induction – an Introduction

- Induction due to parallel or Near parallel paths
- Inductive
 coupling for
 buried pipelines

Graphic developed by Technical Toolboxes

Soil Resistivity is Low

Pipeline Coating is Excellent

Distance to Power Lines is Small

Cathodic Protection is Outstanding

Conductor Current is High

Collocation Angle is <60 degrees

The Problem

AC Corrosion

<20 A/m² No Corrosion >100 A/m² Definitely Corroding

<30 A/m² And DC >1 A/m² <100 A/m² And DC <1 A/m²

Criteria – Old & New

•A Look at Fundamental <u>DC</u> Interference

Interference Defined

Interference Defined

Potential Profile of Typical DC Interference

Source: AMPP Interference Course Manual

Interference Defined

Current Pick-up

Identifying Interference

Current Discharge

Identifying Interference

•What Happens to Our Potentials?

Foreign Pipeline is Interfering

Forei	ign	Pip	el	ine
	0			

ON -1250mV

OFF -900mV

<u>Our Pipeline</u>

ON -850mV

OFF -1150mV

Foreign rectifier interrupted

Identifying Interference

AC Interference - Mitigation

Fixing the Problem

•DC Interference – Mitigation

What are our Options?

- Provide a Low Resistance Path Back to the Source:
 - Bonds & Drains
- Increase Circuit Resistances:
 - Recoat at the Pick-Up Site
 - Add Shields
 - Recoat at Discharge, but Must add alternate Current Flow Path

• Fight Current with Current

Fixing the Problem

•DC Interference – Mitigation

Fixing the Problem

Corrosion Coupons

So what things can we really do with coupons?

- On & Instant-Off Potentials
- IR drop
- Depolarized potentials
- Magnitude and direction of Current
- Detect Interference AC and DC
- Detect shorted pipe
- Quantify dynamic interference with a data logger

Some Useful Resources

Association for Materials Protection & Performance (AMPP)

- **TM0497** Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems
- **SP0177** Mitigation of Alternating Current and Lightning Effects on Metallic Structures and Corrosion Control Systems
- **SP0169** Control of External Corrosion on Underground or Submerged Metallic Piping Systems
- **SP21424** Alternating Current Corrosion on Cathodically Protected Pipelines: Risk Assessment, Mitigation, and Monitoring

Standards

Questions